首页 » 什么能防止你犯同样的错误

什么能防止你犯同样的错误

在重新做旧测试的时候,我得到了几张桌子之外的 Ben Hendrickson 的帮助。在我们进行测试之前,请随时检查一下我们的数学计算。对 Nofollow 测试背后的数学原理此测试包含许多独立试验。在每次试验中,nofollow 或控制都会排名较高。因此,获胜次数将根据二项分布进行分布。其中n是试验次数,p是 nofollow 获胜试验的概率,二项分布的正态近似为:其中W是获胜次数,z 是高于平均值的标准差数,获胜次数的公式如下:

零假设是 在p = 0.5(均等概率)时获胜

为了拒绝零假设并支持 nofollow 是一种有 电报数据库效的 PageRank 塑造方法且置信度为 95% 的假设,我们需要看到至少W ( n ,0.5, 1.645) 次获胜。我们会看到多少次获胜?我们有 95% 的把握至少看到W(n, p , -1.645),其中p是 nofollow 在给定试验中获胜的实际机会。如果我们为我们试图检测的内容设置一个下限p = 5/8 = 0.625,那么我们有一个下限看到W(n , 0.625, -1.645) 获胜(可能性为 95%),如果事实上 nofollow 至少好那么多。我们可以将这个下限设置为我们预期的获胜次数,等于我们需要看到的获胜次数,以 95% 的信心证明 nofollow 更好。之后,我们就可以解出试验次数。

 

所以我们得出结论

我们需要 168 次试验。如果这个 搜索引擎优化 (SEO) 是一套重塑内容以符合测试未能显示 nofollow 更好,那么我们有 95% 的把握 nofollow 获胜的次数低于 62.5%。我们不能说 nofollow 的雕刻不重要,但这确实表明,与我们在实验中无法控制的其他因素相比,它似乎并不重要。20

对 Nofollow 测试背后的数学原理

那么,我们为什么不把它作为下一个测试呢?答 西班牙比特币数据库 案很简单。168 次试验需要设置的域名数量可不少。所以,也许我们会很幸运。如果我们能很好地控制其他因素,并且 nofollow 的塑造效果适中,那么 nofollow 的胜率或许会远高于平均 62.5% 的水平。要使 nofollow 的效果优于对照组,其显著性达到 95%,我们需要在 20 次试验中看到 15 次 nofollow 获胜。这可以通过更多的数学计算来实现,

 

滚动至顶部